Retinoic acid reduces p11 protein levels in bronchial epithelial cells by a posttranslational mechanism.
نویسندگان
چکیده
p11 is a member of the S100 family of proteins, is the cellular ligand of annexin II, and interacts with the carboxyl region of 85-kDa cytosolic phospholipase A(2) (cPLA(2)), inhibiting cPLA(2) activity and arachidonic acid (AA) release. We studied the effect of retinoic acid (RA) on PLA(2) activity in human bronchial epithelial cells and whether p11 contributes to these effects. The addition of 10(-6) M RA resulted in reduced p11 protein levels at 4 days, with the greatest effect observed on days 6 and 7. This effect was dose related (10(-6) to 10(-9) M). RA treatment (10(-6) M) had no effect on cPLA(2) protein levels. p11 mRNA levels were unchanged at 6 and 8 days of treatment (correlating with maximum p11 protein reduction). Treatment with RA reduced p11 levels in control cells and in cells transfected with a p11 expression vector, suggesting a posttranslational mechanism. Lactacystin (10(-6) M), an inhibitor of the human 26S proteasome, blocked the decrease in p11 observed with RA treatment. Compared with control cells (n = 3), RA-treated cells (n = 3) had significantly increased AA release after treatment with the calcium ionophore A-23187 (P = 0.006). Therefore, RA reduces p11 protein expression and increases PLA(2) activity and AA release.
منابع مشابه
Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism.
The retinoids are reported to reduce incidence of second primary aerodigestive cancers. Mechanisms for this chemoprevention are previously linked to all-trans retinoic acid (RA) signaling growth inhibition at G1 in carcinogen-exposed immortalized human bronchial epithelial cells. This study investigated how RA suppresses human bronchial epithelial cell growth at the G1-S cell cycle transition. ...
متن کاملPosttranslational mechanisms contribute to the suppression of specific cyclin:CDK complexes by all-trans retinoic acid in human bronchial epithelial cells.
Retinoids have demonstrated activity in the chemoprevention of aerodigestive tract cancer. Potentially contributing to their lung cancer chemopreventive effects, retinoids inhibit the growth of human bronchial epithelial (HBE) cells. We observed previously that all-trans retinoic acid (t-RA) arrests the growth of HBE cells in the G0 phase of the cell cycle through activation of retinoic acid re...
متن کاملThe Effect of Retinoic Acid on Seminal Vesicle Epithelial Cell
Purpose: The seminal vesicles are androgen dependent exocrine glands producing protein-rich secretion. The retinoic acid has been implicated as a signaling molecule for the seminal vesicle development. In the present study, the effect of retinoic acid on seminal vesicle epithelial cell of neonatal mouse was investigated. Materials and Methods: Newborn male N-MRI mice were injected intraperiton...
متن کاملSoluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells
Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...
متن کاملHuman papillomavirus 16 immortalization of normal human ectocervical epithelial cells alters retinoic acid regulation of cell growth and epidermal growth factor receptor expression.
Retinoids are potent regulators of epithelial cell growth and differentiation. Recently, they have been demonstrated to be effective in the treatment of preneoplastic cervical lesions in which human papillomavirus (HPV) is expressed. To better understand the mechanism of the antineoplastic effect of retinoic acid on HPV-positive cells, the effects of retinoic acid on both normal and HPV-immorta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2000